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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

WINGS OF MINIMUM DRAG

By Y. L. Zhilin

ABSTRACT

The variational problem of minimum drag for a given 1ift is con-
sidered for an arbitrary fixed planform with supersonic edges, subject
to the restrictions of linear: theory. It is shown that the velocity
potential on the trailing-edge characteristic surface satisfies Laplace's
equation with mixed boundary conditions. Camputations of the drag of
minimum-drag wings of quadrilateral planform indicate that only slight
drag reductions from plane-wing values are obtained for cases where the
theory is felt to be most valid. Some consideration is also given the
minimum drag problem for a body with a fixed-tip cross section.
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NATIONAL AFERONAUTICS AND SPACE ADMINISTRATION

WINGS OF MINIMUM DRAG*

By Y. L. Zhilin

The variational problem is considered for a wing of arbitrary
fixed planform for a given 1ift. The wing is assumed to have super-
sonic edges and to have a slight disturbing effect on the free stream.
It is shown that the potential of the disturbed velocity of the wing
of minimum drag on the trailing-edge characteristic surface satisfies
the Laplace equation with mixed boundary conditions. This result was
earlier obtained by M. N. Kogan (ref. 1) for a wing having a straight
trailing edge perpendicular to the undisturbed flow. The computation
of the drag of wings of minimum drag of quadrilateral planform has
shown that the drag of these wings differs slightly from the drag of
plane wings. There 1s considered also the problem of the minimum drag
of a body having a fixed-tip cross section, and a lower limit is ob-
tained for the drag of such a body.

l. Consider the supersonic gas flow around an arbitrary body. The
forces acting on the body can be represented in the form of integrals
over an arbitrary closed surface enclosing the body. If the body has a

small disturbing effect on the free stream, then
-~

X = 92;-0//[(52112 +vZ+wP)cos(nx) - 2uv cos(ny) - 2uw cos(nz)]dsl
51

Y = -Uwpmff[v cos(nx) - u cos(ny)}as; (62=Mb2,,-l) r(l,l)
S1

Z = -U,,pmf [w cos(nx) - u cos(nz)]asq
51

o
*#'"Krylya minimalnogo soprotivleniya." Prikladnaya matematika i
mekhanika, vol. XXI, 1957, pp. 213-220.
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wvhere X, Y, and Z are the components of the force acting on the body,
Uso and p, the velocity and density of the free stream, u, v, and Ww
the components of the disturbed flow, M, 1s the free-stream Mach number,
and n the outer normal to the surface 8Sj.

Moreover, on the surface Sl the equation of conservation of mass
must be observed:

U“Z = ff [—Bzu cos(nx) + v cos(ny) + w cos(nz):ldSl (1.2)
51

where 2: is the difference of the projected areas of the trailing and
leading cross sections of the body on the plane x = constant.

These formulas can be conslderably simplified if for the surface
S; there is taken the surface formed by the forward and aft character-
istic surfaces of the body nj3 and np, shown in figure 1. This method
had been previously employed in considering the variational problem by
A. A. Nikolski (ref. 2) for bodles of revolution and by M. N. Kogan
(ref. 1) for a wing with a straight trailing edge perpendicular to the
undisturbed flow.

On the leading characteristic surface the disturbed velocity is
equal to zero. Hence, the integration in formulas (1.1l) and (1.2) is
conducted only along the trailing characteristlc surface.

Let the equation of this surface be
x = £(y,2), (£2 + £2 = p?) (1.3)

In this case, the cosines of the angles entering formulas (1.1) and
(1.2) are:

Iz

Mo
whence dS; = M, dy dz and formulas (1.1) and (1.2) become:

T
cox(nx) =z,  cos(ny) = - g,  cos(nz) = -

L82-H
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0,
X == ff (%2 + v& + WP + 2uve, + 2uws,)dy &z
Sz

Y = -U_py fj(v + ufg)dy dz, Z = ~VePo ff(w + uf,)dy dz r (1.4)
S5 52

Uwz = —fﬁwz+ﬁy+ﬁzu)dydz
52
J

where Sz is the projection of the trailing characteristic surface on
the plane x = constant. Now introduce the potential @(x,y,z) of the
disturbed velocity:

cp(p=u} ¢y=v} CPZ=W

Denote by @o(y,z) the value of the potential ¢ on the trailing char-
acteristic surface; that is,

9o(¥:2) = 0[£(y,2),¥,72]
Evidently,
q)o’y =V + ufy, qJO,z =Ww + u'fz

If these equations and formula (1.3) are used, the expressions
(1.4) can be reduced to the form

Py 2
X=7 /f(tpo,y + cpg,z)dy dz,  Z = -Ughy ff«vo,z dy dz
85 S2

1= -U°°p°° ffq)();y dy dz, Uwzz ) J‘f(cpo’yfy * mo:zfz)dy dz
Sz

Sp

(1.5)

As was to be expected according to reference 1, the right sides
of the formulas obtained depend only on the value of the potential on
the trailing characteristic surface and do not depend on the normal
derivative of the potential. The obtained formulas for the forces act-
ing on the body are convenient also in that the expressions under the



integral signs do not depend on the geometric properties of the trailing
characteristic surface so that in solving the variational problems simple
equations are obtained for the potential Pg-

Now proceed to consider the variational problem for a lifting wing
of arbitrary planform with supersonic edges. Assume that the wing has
no thickness and lies in the plane y = O. In this case, the functions
¢ and Po will be asymmetrical with respect to the plane y = 0.
Hence, the equation of conservation of mass 1s automatically satisfied,
and in the computation of X and Y the integration can be carried
out only over the upper half of the region Ss symmetrical with respect
to the z-axisj; that is,

2
X = P '/S:/E(pcz),y + @O,z)dy dz, Y = -2U P _/S:/;po,y dy dz (1-6)

where S 1is the upper half of the region 82.

That distribution of the potential in the region S 1is sought for
which, for a glven value of the 1lift Y, the drag X attains a minimum
value. This is equivalent to seeking the minimum of the integral

_ 2 2
J —_/;f(@o’y + (PO,Z - quPo,y)dy dz

where q is the lLagrange constant determined by the magnitude of the
1ift.

The potential Po must become zero on the projection of the line
of intersection of the forward and aft characteristic surfaces on the
plane x = constant. On the remaining part of the boundary of the
region S the values of the potential ¢, are initially unknown, and
here the natural boundary condition must be obtained.

It 1s not difficult to show that the Euler equation for the func-
tional J Ybecomes the Laplace equation:

CPO)YJY + CPO:Z:Z =0 (1.7)

while the natural boundary condition determines the normal derivative:

30 _

5= = @ fory=o,_%2<zg i (1.8)

ool

where 1 is the wing span (fig. 2).

L8821
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Thus, the potential of the disturbed velocity of the wing of mini-
mum drag on the aft characteristic surface satisfied the equation of
Laplace with mixed boundary conditions. (In the given case the mixed
problem can be reduced 1o the problem of Dirichlet with the aid of the
substitution Qg =¥ - qy.) Strictly speaking, it is necessary to show
further that the velocity potential distribution ¢ obtained as a re-
sult of solving the Laplace equation corresponds to the flow around
some wing.l In any case, Py satisfying conditions (1.7) and (1.8) gives
a lower estimate for the drag of wings of minimum drag, since in formu-
lating the variational problem with respect to the potential Pgs addi-
tional conditions, besides a given lift force, were not imposed.

It will be shown now with the aid of an example of wings of quad-
rilateral planform that this estimate differs by an insignificant amount
from the drag of plane wings. Hence, the shape of wings of minimum
drag will not be considered.

It should be remarked that condition (1.7) for the potential of
the disturbed velocity of the wing of minimum drag may be obtained on
the basis of the work of Jones (ref. 3). Jones obtained the result
that the combined flow around a wing of minimum drag possesses the fol-
lowlng properties: the pressure on the surface of the wing is equal to
zero and the down-wash is constant, that is, on the surface of the wing

ggg = 0, g;E = q = const,

where Py 1s the potential of the combined flow satisfying the wave
equation

- =
B q)k,x,x + q)k,y,y + cPk,z,z =0

It is not difficult to see that the Cauchy problem exists for the
derivative awk/ax satisfying the wave equation for the conditions

3@k _

S5 0, o [;;%] = 0 on the surface of the wing

oy

If the uniqueness of the solution of the Cauchy problem is assumed,
then within the entire region bounded by the forward and aft character-
istic surfaces of the wing,

omk/Bx =0 or wk,y,y + @k,z,z =0

11f the forward and aft characteristic surfaces of the wing have
a continuous normal (in this case the wing has a convex planform), this
is evident.




From this, equations (1.7) and (1.8) for ¢y follow directly.
Conditions (1.7) and (1.8) permit comstructing the formula for the drag
of minimum~drag wings. Integrating (1.6) by parts and making use of
equations (1.7) and (1.8) give

1/2 1/2
X = gp, / P 4z, Y = 2U P, / P 4z (1.9)
-1/2 -1/2

The nondimensional coordinates and nondimensional potential are
introduced:

— — —_ 1 Ze)
A = B -
J = 1/2) z = 1/2° cPO = qi1/2 (1.10)

The potential 56, as is not difficult to show, now does not depend
on the magnitude of the 1ift and is determined only by the form of the
line of intersection of the forward and aft characteristic surfaces on
the plane x = constant. In the new variables it follows from equations
(1.9) that

1 2 1
2 Ui, o c
Y [+ o Lillv <3 -_ - -— —
i - dz or L = 2\ dz A1
= =— 21 Pg o 2 P (1.11)
-1 -1
where
Y X
C = e—————— C = m——————
y 1 2 o X 1.2 o
? UwpmS '-2" UoopcoS

S° is the area of the wing, and AN 1is the wing aspect ratio.

The last formula shows that the ratio C2/Cy for wings of minimum
drag, as well as for plane wings, does not depend on the magnitude of
the lift. By meking use of equation (1.7) there can be proven still
another property of the disturbed velocity u on the forward and aft
characteristic surfaces. Since

_ _ 2
@O,y =V + ufy, @O,y,y = vy + Zuyfy + uxfy + ufy,y
equation (1.7) can be written as

a -
Wy, + Vy ot B uy + 2uf, + 2u,fy + u(fy,y + fz’z) =0

L82-d
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At the same time the wave equation wy + Vy - qux = 0 holds
throughout space. Hence, on the trailing characteristic surface of the

wing of minimum drag,
bid + f
2y oy - TZ,Z
uyfy + ugf, + uyxp“ + 5 u=20

or

f + T
oY 72,2 = (1.12)
uO,yfy + uO,zfz + > U, 0

where
u6(y,z) = u(x,y,z) for x = £(y,z)

By using equation (1.3) for £, it is not difficult to prove the
following property of the principal radius of curvature R of the trail-
ing characteristic surface:

Moo

R=cgrees— + R f, =
fy,y+fz’z’ Ryfy 2tz = Mo

Equation (1.12) can then be reduced to the form

£ (uvR)y + £,(uyvR); = 0

This equation shows that the families of lines f = constant and
UOj/ﬁ = constant are orthogonal. The family of lines orthogonal to
the family f = constant is determined by the equation

dy . dz

fy f,
which is the equation of the bicharacteristics. Thus, on the trailing
characteristic surface of the wing of minimum drag along a character-
istie ray,

uoﬂ/ﬁ = const. (1.13)

The constant entering this expression varies from one ray to the
next, and it can be determined only after solving the Goursat problem.

On the plane portions of the tralling characteristic surface along
a characteristic ray, formula (1.13) assumes the form: ug = constant.




Formule (1.13) holds also for the leading characteristic surface
because it has been shown that, in the combined flow in the region
bounded by the leading and trailing characteristic surfaces, the pres-
sure is equal to zero.

2. Compute the drag of minimum-drag wings of quadrilateral planform.
In the preceding section it has been shown that the finding of the po-
tential of the disturbed velocity in the trailing characteristic surface
of a wing of minimum drag reduces to the solution of the mixed boundary
problem for the equation of Laplace. This problem has in principle been
solved by M. V. Keldish and L. I. Sedov, but the solution of concrete
problems presents great formal difficulties. For this reason, it is in
general more convenient to solve this problem not by the analytical
"method but by an electrointegrator. These computations are facilitated
by the fact that for determining the drag it is sufficlent to know the
distribution of g along the tralling edge of the wing.

In the case of wings of quadrilateral planform (fig. 3) the projec-
tion of the line of intersection of the leading and trailing character-
istic surfaces on the plane x = constant consists of pieces of a circle,
parabola, and straight line and is entirely determined by the parameters
m = B'ltgxl and m, = B-ltgxa.

Since in thls case A = 4/(m1 - mp)B, it follows from formula (1.11)

that - 1
vy 8 B dz (2.1
Pe “m-m | Yo )

-

The right slde of this equation depends only on the parameters
my and mp.

For mj = -mp = 1, that is, for a wing of rhomboid planform with
sonic edges, the region S 1is a semicirecle and the potential P is
readily found analytically. In thls case,

—_ z _ ol 2
Py = -r sin 6 + LT” 5in 6 are tg[—2F- sin 6]+ 1-I° o5 9 1p FoH2r cos 6
T 1-r? anr 1+ré-2r cos 6

(2.2)

where ré = ?2 +z% and tgh = ?/E.

At the trailing edge,

1-%2% 1,1+

9o = ==
nZ 1l -

SERIST

L82-H
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For this wing,

¢ _s(s?_ )
p C n\4

X

For the plane wing of the same planform,

2
Bcz=32
Cx 35

that is, in the given case the drag of the plane wing 1s 10 percent.
greater than the drag of the minimum-drag wing. For other values of the
parameters m; and mp, the computation of the potential was made with
the aid of the EI-11 electrointegrator, constructed according to the
principle of electrical modeling. A preliminary comparison of the exact
solution (e.g., (2.2)) with the solution computed by the electrointe-
grator showed that the error in computing by the electrointegrator does
not exceed 1 percent for BC;/CX.

Figures 4 and 5 show the results of the computation of the poten-
tial P9 along the tralling edge of the wings of minimum drag.

The computations show that for & sonic leading edge the drag of
minimum-drag wings may differ considerably (by 12-22 percent) from the
drag of plane wings of the same planform. However, this fact requires
careful check since the applicability of the linear theory raises some
doubt in this case. In those cases, however, where the leading edge is
essentially supersonlc and the applicability of the linear theory does
not raise any doubt, the gain in drag reduction that is obtained is in-
significant (of the order of 1-5 percent). The computations show that
not only the curvature of the wing surface but its planform itself have
a small effect on the value of the magnitude BCZ/Cy,. The values of
this magnitude for wings of minimum drag are (in’the parentheses is
given the decrease in drag in percent in comparison with plane wings):

my m2
-1.0 -0.8 -0.6 -0.2 0 0.2 0.4 0.6
0.4 4.04 (1)
.6 3.74 (1) 3.93 (1)} 4.08 (2) 4.34 (3.5)
.8 3.70 (3) ] 3.73 (2.5)] 3.97 (2)} 4.18 (4.5) | 4.54 (4.5)|4.95 (7.5)
1.0 {3.75 (10) | 3.66 (4) | 3.80 (&) 4.18 (9)! 4.50 (12.5) | 4.94 (14) i5.62 (19) |6.6 (22)
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3. Derive the equation for the potentlal of the disturbed velocity
of a body of minimum drag having a fixed-tip cross section. Consider )
the problem of the minimum-drag wing having & flixed-tip cross section.l *
The drag experienced by the body in supersonic flow and the equation of
conservation of mass will be considered in the form (1.5).

We shall seek that distribution of potential Pg in the region
S for which the minimum drag is attained for fixed value of g. It is
not difficult to show that this minimum is attained for Pg satisfying
the following conditions (fig. 6):

L82~H

P0,y,y t 90,2,z = —Q(fy,y + £y 5) within the region S

On the projection 1 of the tip section in the plane x = con-
stant (q is a Lagrange multiplier)

g -~ _q Of
el

On the projection 1, of the line of intersection of the leading
and trailing characterlstic surfaces on the plane X = constant: v

Py = 0

The following function 1s introduced:

Vv =f + %? (3.1)

As a result, the mixed boundary problem for the Laplace equation
is also obtained:

Wy)y +'Wx,x =0 within the region © .}
(3.2)
Wfm=0 on 1; Yy=f on Iz

Here, as previously, since the shape of the extremal bodies is of no
interest, only the drag acting on these bodies is considered. Inte-
grating by parts the expressions (1.5) for X and for UexZ and making
use of formulas (3.1) and (3.2) give

p. U
X=‘°Z°'2<12, Um2=qBZS-qJ J=/f%dl
ip

lFurthermore, there 1s fixed either the body length, 1f the body
does not extend beyond the limits of the Mach cone, or its planform if
the body has supersonic edges.
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PUZ  z2
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The integral J entering this equation is always positive and is
determined only by the shape of the region S. Hence, the following
estimate for the drag of the arbitrary body holds:

2
pono 22

>~ 4

BZS

In the case where the line of intersection of the forward and aft
characteristic surfaces lies in the plane x = constant, this estimate
coincides with the drag of bodies of minimum drag:

Xntn = ool 2
n 2 BZS

In particular, the bodies of revolution considered in the work of
A. A. Nikolski (ref. 2) refer to this case.

~ All that has been said in this section applies also to bodies
having cylindrical ducts.
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